Frontier Macromolecular Crystallography (FMX)

FMX at NSLS-II

- This MX beamline will exploit the finest properties of NSLS-II and push the state of the art in x-ray optics.
- The tunable, one micron, variable divergence beam handles small crystals, and very large unit cells.
- Preserving beam coherence makes new experiments possible.
- Cryogenic automation at the state of the art provides convenience for users.

Examples of Science Areas & Impact

- STRUCTURAL BIOLOGY: The most interesting structures are often the most difficult. This beamline will push new limits in crystal size.
- BIOCHEMISTRY: Knowledge of intermediates in enzymatic pathways expands our understanding of cellular and microbiological processes.
- PHYSIOLOGY AND MEDICINE: Knowing how drugs interact with their targets is essential to development of improved and new pharmacologically effective compounds.

Crystals of β amyloid, which are always long and very thin

From: Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D. Nature 447, 453-7 (2007)

Beamline Capabilities

TECHNIQUE: macromolecular crystallography

SOURCE: canted U20 in-vacuum undulator

ENERGY RANGE / RESOLUTION: 5-20 keV; $\Delta E/E$

~5x10⁻⁴

BEAM SIZE: from 1x1 to 100x100 μm²; diffraction

resolution to 1 Å

BROOKHAVEN
NATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES